Numerical Methods For Ordinary Differential Equations
Numerical ordinary differential equations is the part of numerical analysis which studies the numerical solution of ordinary differential equations (ODEs). This field is also known under the name numerical integration, but some people reserve this term for the computation of integrals.
Many differential equations cannot be solved analytically; however, in science and engineering, a numeric approximation to the solution is often good enough to solve a problem. The algorithms studied here can be used to compute such an approximation. An alternative method is to use techniques from calculus to obtain a series expansion of the solution.
Ordinary differential equations occur in many scientific disciplines, for instance in physics, chemistry, biology, and economics. In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved.
Read more about Numerical Methods For Ordinary Differential Equations: The Problem, Methods, Analysis, History, Numerical Solutions To Second Order One Dimensional Boundary Value Problems
Famous quotes containing the words numerical, methods, ordinary and/or differential:
“The terrible tabulation of the French statists brings every piece of whim and humor to be reducible also to exact numerical ratios. If one man in twenty thousand, or in thirty thousand, eats shoes, or marries his grandmother, then, in every twenty thousand, or thirty thousand, is found one man who eats shoes, or marries his grandmother.”
—Ralph Waldo Emerson (18031882)
“I conceive that the leading characteristic of the nineteenth century has been the rapid growth of the scientific spirit, the consequent application of scientific methods of investigation to all the problems with which the human mind is occupied, and the correlative rejection of traditional beliefs which have proved their incompetence to bear such investigation.”
—Thomas Henry Huxley (182595)
“The ordinary night was graced
For them by the swift tide of blood
That silently they took at flood,
And for a little time they prized
Themselves emparadised.”
—Howard Nemerov (b. 1920)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)