Global Truncation Error
The global truncation error is the error at a fixed time, after however many steps the methods needs to take to reach that time from the initial time. The global truncation error is the cumulative effect of the local truncation errors committed in each step. The number of steps is easily determined to be, which is proportional to, and the error committed in each step is proportional to (see the previous section). Thus, it is to be expected that the global truncation error will be proportional to .
This intuitive reasoning can be made precise. If the solution has a bounded second derivative and is Lipschitz continuous in its second argument, then the global truncation error (GTE) is bounded by
where is an upper bound on the second derivative of on the given interval and is the Lipschitz constant of .
The precise form of this bound of little practical importance, as in most cases the bound vastly overestimates the actual error committed by the Euler method. What is important is that it shows that the global truncation error is (approximately) proportional to . For this reason, the Euler method is said to be first order.
Read more about this topic: Euler Method
Famous quotes containing the words global and/or error:
“The Sage of Toronto ... spent several decades marveling at the numerous freedoms created by a global village instantly and effortlessly accessible to all. Villages, unlike towns, have always been ruled by conformism, isolation, petty surveillance, boredom and repetitive malicious gossip about the same families. Which is a precise enough description of the global spectacles present vulgarity.”
—Guy Debord (b. 1931)
“There is a lot of difference between tempting and leading into error. God tempts but does not lead into error. To tempt is to provide opportunities for us to do certain things if we do not love God, but putting us under no necessity to do so. To lead into error is to compel a man necessarily to conclude and follow a falsehood.”
—Blaise Pascal (16231662)