In mathematics, one can often define a direct product of objects already known, giving a new one. This is generally the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one talks about the product in category theory, which formalizes these notions.
Examples are the product of sets (see Cartesian product), groups (described below), the product of rings and of other algebraic structures. The product of topological spaces is another instance.
There is also the direct sum – in some areas this is used interchangeably, in others it is a different concept.
Read more about Direct Product: Examples, Group Direct Product, Direct Product of Modules, Topological Space Direct Product, Direct Product of Binary Relations, Categorical Product, Internal and External Direct Product, Metric and Norm
Famous quotes containing the words direct and/or product:
“Traditionally in American society, men have been trained for both competition and teamwork through sports, while women have been reared to merge their welfare with that of the family, with fewer opportunities for either independence or other team identifications, and fewer challenges to direct competition. In effect, women have been circumscribed within that unit where the benefit of one is most easily believed to be the benefit of all.”
—Mary Catherine Bateson (b. 1939)
“[As teenager], the trauma of near-misses and almost- consequences usually brings us to our senses. We finally come down someplace between our parents safety advice, which underestimates our ability, and our own unreasonable disregard for safety, which is our childlike wish for invulnerability. Our definition of acceptable risk becomes a product of our own experience.”
—Roger Gould (20th century)