Direct Product of Binary Relations
On the Cartesian product of two sets with binary relations R and S, define (a, b) T (c, d) as a R c and b S d. If R and S are both reflexive, irreflexive, transitive, symmetric, or antisymmetric, relation T has the same property. Combining properties it follows that this also applies for being a preorder and being an equivalence relation. However, if R and S are total relations, T is in general not.
Read more about this topic: Direct Product
Famous quotes containing the words direct, product and/or relations:
“One merit in Carlyle, let the subject be what it may, is the freedom of prospect he allows, the entire absence of cant and dogma. He removes many cartloads of rubbish, and leaves open a broad highway. His writings are all unfenced on the side of the future and the possible. Though he does but inadvertently direct our eyes to the open heavens, nevertheless he lets us wander broadly underneath, and shows them to us reflected in innumerable pools and lakes.”
—Henry David Thoreau (18171862)
“Labor is work that leaves no trace behind it when it is finished, or if it does, as in the case of the tilled field, this product of human activity requires still more labor, incessant, tireless labor, to maintain its identity as a work of man.”
—Mary McCarthy (19121989)
“Words are but symbols for the relations of things to one another and to us; nowhere do they touch upon absolute truth.”
—Friedrich Nietzsche (18441900)