Direct Product - Categorical Product

Categorical Product

The direct product can be abstracted to an arbitrary category. In a general category, given a collection of objects Ai and a collection of morphisms pi from A to Ai with i ranging in some index set I, an object A is said to be a categorical product in the category if, for any object B and any collection of morphisms fi from B to Ai, there exists a unique morphism f from B to A such that fi = pi f and this object A is unique. This not only works for two factors, but arbitrarily (even infinitely) many.

For groups we similarly define the direct product of a more general, arbitrary collection of groups Gi for i in I, I an index set. Denoting the cartesian product of the groups by G we define multiplication on G with the operation of componentwise multiplication; and corresponding to the pi in the definition above are the projection maps

,

the functions that take to its ith component gi.

Read more about this topic:  Direct Product

Famous quotes containing the words categorical and/or product:

    We do the same thing to parents that we do to children. We insist that they are some kind of categorical abstraction because they produced a child. They were people before that, and they’re still people in all other areas of their lives. But when it comes to the state of parenthood they are abruptly heir to a whole collection of virtues and feelings that are assigned to them with a fine arbitrary disregard for individuality.
    Leontine Young (20th century)

    Out of the thousand writers huffing and puffing through movieland there are scarcely fifty men and women of wit or talent. The rest of the fraternity is deadwood. Yet, in a curious way, there is not much difference between the product of a good writer and a bad one. They both have to toe the same mark.
    Ben Hecht (1893–1964)