Direct Product - Group Direct Product

Group Direct Product

In group theory one can define the direct product of two groups (G, *) and (H, ●), denoted by G × H. For abelian groups which are written additively, it may also be called the direct sum of two groups, denoted by .

It is defined as follows:

  • the set of the elements of the new group is the cartesian product of the sets of elements of G and H, that is {(g, h): g in G, h in H};
  • on these elements put an operation, defined elementwise:
    (g, h) × (g', h' ) = (g * g', hh' )

(Note the operation * may be the same as ●.)

This construction gives a new group. It has a normal subgroup isomorphic to G (given by the elements of the form (g, 1)), and one isomorphic to H (comprising the elements (1, h)).

The reverse also holds, there is the following recognition theorem: If a group K contains two normal subgroups G and H, such that K= GH and the intersection of G and H contains only the identity, then K is isomorphic to G x H. A relaxation of these conditions, requiring only one subgroup to be normal, gives the semidirect product.

As an example, take as G and H two copies of the unique (up to isomorphisms) group of order 2, C2: say {1, a} and {1, b}. Then C2×C2 = {(1,1), (1,b), (a,1), (a,b)}, with the operation element by element. For instance, (1,b)*(a,1) = (1*a, b*1) = (a,b), and (1,b)*(1,b) = (1,b2) = (1,1).

With a direct product, we get some natural group homomorphisms for free: the projection maps

,

called the coordinate functions.

Also, every homomorphism f on the direct product is totally determined by its component functions .

For any group (G, *), and any integer n ≥ 0, multiple application of the direct product gives the group of all n-tuples Gn (for n=0 the trivial group). Examples:

  • Zn
  • Rn (with additional vector space structure this is called Euclidean space, see below)

Read more about this topic:  Direct Product

Famous quotes containing the words group, direct and/or product:

    My routines come out of total unhappiness. My audiences are my group therapy.
    Joan Rivers (b. 1935)

    Traditionally in American society, men have been trained for both competition and teamwork through sports, while women have been reared to merge their welfare with that of the family, with fewer opportunities for either independence or other team identifications, and fewer challenges to direct competition. In effect, women have been circumscribed within that unit where the benefit of one is most easily believed to be the benefit of all.
    Mary Catherine Bateson (b. 1939)

    Perhaps I am still very much of an American. That is to say, naïve, optimistic, gullible.... In the eyes of a European, what am I but an American to the core, an American who exposes his Americanism like a sore. Like it or not, I am a product of this land of plenty, a believer in superabundance, a believer in miracles.
    Henry Miller (1891–1980)