Direct Product of Modules
The direct product for modules (not to be confused with the tensor product) is very similar to the one defined for groups above, using the cartesian product with the operation of addition being componentwise, and the scalar multiplication just distributing over all the components. Starting from R we get Euclidean space Rn, the prototypical example of a real n-dimensional vector space. The direct product of Rm and Rn is Rm + n.
Note that a direct product for a finite index is identical to the direct sum . The direct sum and direct product differ only for infinite indices, where the elements of a direct sum are zero for all but for a finite number of entries. They are dual in the sense of Category Theory: the direct sum is the coproduct, while the direct product is the product.
For example, consider and, the infinite direct product and direct sum of the real numbers. Only sequences with a finite number of non-zero elements are in Y. For example, (1,0,0,0,...) is in Y but (1,1,1,1,...) is not. Both of these sequences are in the direct product X; in fact, Y is a proper subset of X (that is, Y⊂X).
Read more about this topic: Direct Product
Famous quotes containing the words direct and/or product:
“Long as I have lived, and many blasphemers as I have heard and seen, I have never yet heard or witnessed any direct and conscious blasphemy or irreverence; but of indirect and habitual, enough. Where is the man who is guilty of direct and personal insolence to Him that made him?”
—Henry David Thoreau (18171862)
“The seashore is a sort of neutral ground, a most advantageous point from which to contemplate this world. It is even a trivial place. The waves forever rolling to the land are too far-traveled and untamable to be familiar. Creeping along the endless beach amid the sun-squall and the foam, it occurs to us that we, too, are the product of sea-slime.”
—Henry David Thoreau (18171862)