Direct Product - Direct Product of Modules

Direct Product of Modules

The direct product for modules (not to be confused with the tensor product) is very similar to the one defined for groups above, using the cartesian product with the operation of addition being componentwise, and the scalar multiplication just distributing over all the components. Starting from R we get Euclidean space Rn, the prototypical example of a real n-dimensional vector space. The direct product of Rm and Rn is Rm + n.

Note that a direct product for a finite index is identical to the direct sum . The direct sum and direct product differ only for infinite indices, where the elements of a direct sum are zero for all but for a finite number of entries. They are dual in the sense of Category Theory: the direct sum is the coproduct, while the direct product is the product.

For example, consider and, the infinite direct product and direct sum of the real numbers. Only sequences with a finite number of non-zero elements are in Y. For example, (1,0,0,0,...) is in Y but (1,1,1,1,...) is not. Both of these sequences are in the direct product X; in fact, Y is a proper subset of X (that is, YX).

Read more about this topic:  Direct Product

Famous quotes containing the words direct and/or product:

    As for your friend, my prospective reader, I hope he ignores Fort Sumter, and “Old Abe,” and all that; for that is just the most fatal, and, indeed, the only fatal weapon you can direct against evil ever; for, as long as you know of it, you are particeps criminis. What business have you, if you are an “angel of light,” to be pondering over the deeds of darkness, reading the New York Herald, and the like.
    Henry David Thoreau (1817–1862)

    To [secure] to each labourer the whole product of his labour, or as nearly as possible, is a most worthy object of any good government.
    Abraham Lincoln (1809–1865)