Direct Product of Modules
The direct product for modules (not to be confused with the tensor product) is very similar to the one defined for groups above, using the cartesian product with the operation of addition being componentwise, and the scalar multiplication just distributing over all the components. Starting from R we get Euclidean space Rn, the prototypical example of a real n-dimensional vector space. The direct product of Rm and Rn is Rm + n.
Note that a direct product for a finite index is identical to the direct sum . The direct sum and direct product differ only for infinite indices, where the elements of a direct sum are zero for all but for a finite number of entries. They are dual in the sense of Category Theory: the direct sum is the coproduct, while the direct product is the product.
For example, consider and, the infinite direct product and direct sum of the real numbers. Only sequences with a finite number of non-zero elements are in Y. For example, (1,0,0,0,...) is in Y but (1,1,1,1,...) is not. Both of these sequences are in the direct product X; in fact, Y is a proper subset of X (that is, Y⊂X).
Read more about this topic: Direct Product
Famous quotes containing the words direct and/or product:
“He had robbed the body of its taint, the worlds taunts of their sting; he had shown her the holiness of direct desire.”
—E.M. (Edward Morgan)
“The UN is not just a product of do-gooders. It is harshly real. The day will come when men will see the UN and what it means clearly. Everything will be all rightyou know when? When people, just people, stop thinking of the United Nations as a weird Picasso abstraction, and see it as a drawing they made themselves.”
—Dag Hammarskjöld (19051961)