In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation.
Read more about Congruence Relation: Basic Example, Definition, Relation With Homomorphisms, Congruences of Groups, and Normal Subgroups and Ideals, Universal Algebra
Famous quotes containing the words congruence and/or relation:
“As for butterflies, I can hardly conceive
of ones attending upon you; but to question
the congruence of the complement is vain, if it exists.”
—Marianne Moore (18871972)
“Skepticism is unbelief in cause and effect. A man does not see, that, as he eats, so he thinks: as he deals, so he is, and so he appears; he does not see that his son is the son of his thoughts and of his actions; that fortunes are not exceptions but fruits; that relation and connection are not somewhere and sometimes, but everywhere and always; no miscellany, no exemption, no anomaly,but method, and an even web; and what comes out, that was put in.”
—Ralph Waldo Emerson (18031882)