In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation.
Read more about Congruence Relation: Basic Example, Definition, Relation With Homomorphisms, Congruences of Groups, and Normal Subgroups and Ideals, Universal Algebra
Famous quotes containing the words congruence and/or relation:
“As for butterflies, I can hardly conceive
of ones attending upon you; but to question
the congruence of the complement is vain, if it exists.”
—Marianne Moore (18871972)
“We shall never resolve the enigma of the relation between the negative foundations of greatness and that greatness itself.”
—Jean Baudrillard (b. 1929)