Definition
The definition of a congruence depends on the type of algebraic structure under consideration. Particular definitions of congruence can be made for groups, rings, vector spaces, modules, semigroups, lattices, and so forth. The common theme is that a congruence is an equivalence relation on an algebraic object that is compatible with the algebraic structure, in the sense that the operations are well-defined on the equivalence classes.
For example, a group is an algebraic object consisting of a set together with a single binary operation, satisfying certain axioms. If is a group with operation ∗, a congruence relation on G is an equivalence relation ≡ on the elements of G satisfying
- g1 ≡ g2 and h1 ≡ h2 ⇒ g1 ∗ h1 ≡ g2 ∗ h2
for all g1, g2, h1, h2 ∈ G. For a congruence on a group, the equivalence class containing the identity element is always a normal subgroup, and the other equivalence classes are the cosets of this subgroup. Together, these equivalence classes are the elements of a quotient group.
When an algebraic structure includes more than one operation, congruence relations are required to be compatible with each operation. For example, a ring possesses both addition and multiplication, and a congruence relation on a ring must satisfy
- r1 + s1 ≡ r2 + s2 and r1s1 ≡ r2s2
whenever r1 ≡ r2 and s1 ≡ s2. For a congruence on a ring, the equivalence class containing 0 is always a two-sided ideal, and the two operations on the set of equivalence classes define the corresponding quotient ring.
The general notion of a congruence relation can be given a formal definition in the context of universal algebra, a field which studies ideas common to all algebraic structures. In this setting, a congruence relation is an equivalence relation ≡ on an algebraic structure that satisfies
- μ(a1, a2, ..., an) ≡ μ(a1′, a2′, ..., an′)
for every n-ary operation μ, and all elements a1,...,an,a1′,...,an′ satisfying ai ≡ ai′ for each i.
Read more about this topic: Congruence Relation
Famous quotes containing the word definition:
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)