Definition
The definition of a congruence depends on the type of algebraic structure under consideration. Particular definitions of congruence can be made for groups, rings, vector spaces, modules, semigroups, lattices, and so forth. The common theme is that a congruence is an equivalence relation on an algebraic object that is compatible with the algebraic structure, in the sense that the operations are well-defined on the equivalence classes.
For example, a group is an algebraic object consisting of a set together with a single binary operation, satisfying certain axioms. If is a group with operation ∗, a congruence relation on G is an equivalence relation ≡ on the elements of G satisfying
- g1 ≡ g2 and h1 ≡ h2 ⇒ g1 ∗ h1 ≡ g2 ∗ h2
for all g1, g2, h1, h2 ∈ G. For a congruence on a group, the equivalence class containing the identity element is always a normal subgroup, and the other equivalence classes are the cosets of this subgroup. Together, these equivalence classes are the elements of a quotient group.
When an algebraic structure includes more than one operation, congruence relations are required to be compatible with each operation. For example, a ring possesses both addition and multiplication, and a congruence relation on a ring must satisfy
- r1 + s1 ≡ r2 + s2 and r1s1 ≡ r2s2
whenever r1 ≡ r2 and s1 ≡ s2. For a congruence on a ring, the equivalence class containing 0 is always a two-sided ideal, and the two operations on the set of equivalence classes define the corresponding quotient ring.
The general notion of a congruence relation can be given a formal definition in the context of universal algebra, a field which studies ideas common to all algebraic structures. In this setting, a congruence relation is an equivalence relation ≡ on an algebraic structure that satisfies
- μ(a1, a2, ..., an) ≡ μ(a1′, a2′, ..., an′)
for every n-ary operation μ, and all elements a1,...,an,a1′,...,an′ satisfying ai ≡ ai′ for each i.
Read more about this topic: Congruence Relation
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)