Congruence Relation - Basic Example

Basic Example

The prototypical example of a congruence relation is congruence modulo on the set of integers. For a given positive integer, two integers and are called congruent modulo , written

if is divisible by (or equivalently if and have the same remainder when divided by ).

for example, and are congruent modulo ,

since is a multiple of 10, or equivalently since both and have a remainder of when divided by .

Congruence modulo (for a fixed ) is compatible with both addition and multiplication on the integers. That is, if

and

then

and

The corresponding addition and multiplication of equivalence classes is known as modular arithmetic. From the point of view of abstract algebra, congruence modulo is a congruence relation on the ring of integers, and arithmetic modulo occurs on the corresponding quotient ring.

Read more about this topic:  Congruence Relation

Famous quotes containing the word basic:

    Nothing and no one can destroy the Chinese people. They are relentless survivors. They are the oldest civilized people on earth. Their civilization passes through phases but its basic characteristics remain the same. They yield, they bend to the wind, but they never break.
    Pearl S. Buck (1892–1973)

    The basic essential of a great actor is that he loves himself in acting.
    Charlie Chaplin (1889–1977)