Basic Example
The prototypical example of a congruence relation is congruence modulo on the set of integers. For a given positive integer, two integers and are called congruent modulo , written
if is divisible by (or equivalently if and have the same remainder when divided by ).
for example, and are congruent modulo ,
since is a multiple of 10, or equivalently since both and have a remainder of when divided by .
Congruence modulo (for a fixed ) is compatible with both addition and multiplication on the integers. That is, if
- and
then
- and
The corresponding addition and multiplication of equivalence classes is known as modular arithmetic. From the point of view of abstract algebra, congruence modulo is a congruence relation on the ring of integers, and arithmetic modulo occurs on the corresponding quotient ring.
Read more about this topic: Congruence Relation
Famous quotes containing the word basic:
“When you realize how hard it is to know the truth about yourself, you understand that even the most exhaustive and well-meaning autobiography, determined to tell the truth, represents, at best, a guess. There have been times in my life when I felt incredibly happy. Life was full. I seemed productive. Then I thought,Am I really happy or am I merely masking a deep depression with frantic activity? If I dont know such basic things about myself, who does?”
—Phyllis Rose (b. 1942)
“Nothing and no one can destroy the Chinese people. They are relentless survivors. They are the oldest civilized people on earth. Their civilization passes through phases but its basic characteristics remain the same. They yield, they bend to the wind, but they never break.”
—Pearl S. Buck (18921973)