Congruences of Groups, and Normal Subgroups and Ideals
In the particular case of groups, congruence relations can be described in elementary terms as follows: If G is a group (with identity element e and operation *) and ~ is a binary relation on G, then ~ is a congruence whenever:
- Given any element a of G, a ~ a (reflexivity);
- Given any elements a and b of G, if a ~ b, then b ~ a (symmetry);
- Given any elements a, b, and c of G, if a ~ b and b ~ c, then a ~ c (transitivity);
- Given any elements a, a', b, and b' of G, if a ~ a' and b ~ b', then a * b ~ a' * b' ;
- Given any elements a and a' of G, if a ~ a', then a−1 ~ a' −1 (this can actually be proven from the other four, so is strictly redundant).
Conditions 1, 2, and 3 say that ~ is an equivalence relation.
A congruence ~ is determined entirely by the set {a ∈ G : a ~ e} of those elements of G that are congruent to the identity element, and this set is a normal subgroup. Specifically, a ~ b if and only if b−1 * a ~ e. So instead of talking about congruences on groups, people usually speak in terms of normal subgroups of them; in fact, every congruence corresponds uniquely to some normal subgroup of G.
Read more about this topic: Congruence Relation
Famous quotes containing the words normal and/or ideals:
“Freedom is poetry, taking liberties with words, breaking the rules of normal speech, violating common sense. Freedom is violence.”
—Norman O. Brown (b. 1913)
“With the breakdown of the traditional institutions which convey values, more of the burdens and responsibility for transmitting values fall upon parental shoulders, and it is getting harder all the time both to embody the virtues we hope to teach our children and to find for ourselves the ideals and values that will give our own lives purpose and direction.”
—Neil Kurshan (20th century)