Relation With Homomorphisms
If ƒ: A → B is a homomorphism between two algebraic structures (such as homomorphism of groups, or a linear map between vector spaces), then the relation ≡ defined by
- a1 ≡ a2 if and only if ƒ(a1) = ƒ(a2)
is a congruence relation. By the first isomorphism theorem, the image of A under ƒ is a substructure of B isomorphic to the quotient of A by this congruence.
Read more about this topic: Congruence Relation
Famous quotes containing the words relation with and/or relation:
“[Mans] life consists in a relation with all things: stone, earth, trees, flowers, water, insects, fishes, birds, creatures, sun, rainbow, children, women, other men. But his greatest and final relation is with the sun.”
—D.H. (David Herbert)
“Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.”
—Alexander Herzen (18121870)