Definition
Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero x of R can be written as a product (an empty product for the unit) of irreducible elements pi of R and a unit u:
- x = u p1 p2 ... pn with n≥0
and this representation is unique in the following sense: If q1,...,qm are irreducible elements of R and w is a unit such that
- x = w q1 q2 ... qm with m≥0,
then m = n and there exists a bijective map φ : {1,...,n} -> {1,...,m} such that pi is associated to qφ(i) for i ∈ {1, ..., n}.
The uniqueness part is usually hard to verify, which is why the following equivalent definition is useful:
- A unique factorization domain is an integral domain R in which every non-zero element can be written as a product of a unit and prime elements of R.
Read more about this topic: Unique Factorization Domain
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)