Unique Factorization Domain - Definition

Definition

Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero x of R can be written as a product (an empty product for the unit) of irreducible elements pi of R and a unit u:

x = u p1 p2 ... pn with n≥0

and this representation is unique in the following sense: If q1,...,qm are irreducible elements of R and w is a unit such that

x = w q1 q2 ... qm with m≥0,

then m = n and there exists a bijective map φ : {1,...,n} -> {1,...,m} such that pi is associated to qφ(i) for i ∈ {1, ..., n}.

The uniqueness part is usually hard to verify, which is why the following equivalent definition is useful:

A unique factorization domain is an integral domain R in which every non-zero element can be written as a product of a unit and prime elements of R.

Read more about this topic:  Unique Factorization Domain

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)