Unique Factorization Domain - Definition

Definition

Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero x of R can be written as a product (an empty product for the unit) of irreducible elements pi of R and a unit u:

x = u p1 p2 ... pn with n≥0

and this representation is unique in the following sense: If q1,...,qm are irreducible elements of R and w is a unit such that

x = w q1 q2 ... qm with m≥0,

then m = n and there exists a bijective map φ : {1,...,n} -> {1,...,m} such that pi is associated to qφ(i) for i ∈ {1, ..., n}.

The uniqueness part is usually hard to verify, which is why the following equivalent definition is useful:

A unique factorization domain is an integral domain R in which every non-zero element can be written as a product of a unit and prime elements of R.

Read more about this topic:  Unique Factorization Domain

Famous quotes containing the word definition:

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)