Definition
Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero x of R can be written as a product (an empty product for the unit) of irreducible elements pi of R and a unit u:
- x = u p1 p2 ... pn with n≥0
and this representation is unique in the following sense: If q1,...,qm are irreducible elements of R and w is a unit such that
- x = w q1 q2 ... qm with m≥0,
then m = n and there exists a bijective map φ : {1,...,n} -> {1,...,m} such that pi is associated to qφ(i) for i ∈ {1, ..., n}.
The uniqueness part is usually hard to verify, which is why the following equivalent definition is useful:
- A unique factorization domain is an integral domain R in which every non-zero element can be written as a product of a unit and prime elements of R.
Read more about this topic: Unique Factorization Domain
Famous quotes containing the word definition:
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)