In algebra (which is a branch of mathematics), a prime ideal is a subset of a ring which shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number or zero.
Primitive ideals are prime, and prime ideals are both primary and semiprime.
Read more about Prime Ideal: Prime Ideals For Commutative Rings, Prime Ideals For Noncommutative Rings, Important Facts, Connection To Maximality
Famous quotes containing the words prime and/or ideal:
“... unless the actor is able to discourse most eloquently without opening his lips, he lacks the prime essential of a finished artist.”
—Julia Marlowe (18701950)
“The difference between the actual and the ideal force of man is happily figured in by the schoolmen, in saying, that the knowledge of man is an evening knowledge, vespertina cognitio, but that of God is a morning knowledge, matutina cognitio.”
—Ralph Waldo Emerson (18031882)