In abstract algebra, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors (e.g., Bourbaki) refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.
Principal ideal domains are thus mathematical objects which behave somewhat like the integers, with respect to divisibility: any element of a PID has a unique decomposition into prime elements (so an analogue of the fundamental theorem of arithmetic holds); any two elements of a PID have a greatest common divisor (although it may not be possible to find it using the Euclidean algorithm). If x and y are elements of a PID without common divisors, then every element of the PID can be written in the form ax + by.
Principal ideal domains are noetherian, they are integrally closed, they are unique factorization domains and Dedekind rings. All Euclidean domains and all fields are principal ideal domains.
- Commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ fields
Read more about Principal Ideal Domain: Examples, Modules, Properties
Famous quotes containing the words principal, ideal and/or domain:
“All animals, except man, know that the principal business of life is to enjoy it.”
—Samuel Butler (18351902)
“The ideal of the self-sufficient American family is a myth, dangerous because most families, especially affluent families, do in fact make use of a range of services to survive. Families needing one or another kind of help are not morally deficient; most families do need assistance at one time or another.”
—Joseph Featherstone (20th century)
“The vice named surrealism is the immoderate and impassioned use of the stupefacient image or rather of the uncontrolled provocation of the image for its own sake and for the element of unpredictable perturbation and of metamorphosis which it introduces into the domain of representation; for each image on each occasion forces you to revise the entire Universe.”
—Louis Aragon (18971982)