Unique Factorization Domain

Unique Factorization Domain

In mathematics, a unique factorization domain (UFD) is a commutative ring in which every non-unit element, with special exceptions, can be uniquely written as a product of prime elements (or irreducible elements), analogous to the fundamental theorem of arithmetic for the integers. UFDs are sometimes called factorial rings, following the terminology of Bourbaki.

Note that unique factorization domains appear in the following chain of class inclusions:

Commutative ringsintegral domainsintegrally closed domainsunique factorization domainsprincipal ideal domainsEuclidean domainsfields

Read more about Unique Factorization Domain:  Definition, Examples, Non-examples, Properties, Equivalent Conditions For A Ring To Be A UFD

Famous quotes containing the words unique and/or domain:

    The unique and supreme voluptuousness of love lies in the certainty of committing evil. And men and women know from birth that in evil is found all sensual delight.
    Charles Baudelaire (1821–1867)

    While you are divided from us by geographical lines, which are imaginary, and by a language which is not the same, you have not come to an alien people or land. In the realm of the heart, in the domain of the mind, there are no geographical lines dividing the nations.
    Anna Howard Shaw (1847–1919)