Unique Factorization Domain
In mathematics, a unique factorization domain (UFD) is a commutative ring in which every non-unit element, with special exceptions, can be uniquely written as a product of prime elements (or irreducible elements), analogous to the fundamental theorem of arithmetic for the integers. UFDs are sometimes called factorial rings, following the terminology of Bourbaki.
Note that unique factorization domains appear in the following chain of class inclusions:
- Commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ fields
Read more about Unique Factorization Domain: Definition, Examples, Non-examples, Properties, Equivalent Conditions For A Ring To Be A UFD
Famous quotes containing the words unique and/or domain:
“An absolute can only be given in an intuition, while all the rest has to do with analysis. We call intuition here the sympathy by which one is transported into the interior of an object in order to coincide with what there is unique and consequently inexpressible in it. Analysis, on the contrary, is the operation which reduces the object to elements already known.”
—Henri Bergson (18591941)
“No domain of nature is quite closed to man at all times.”
—Henry David Thoreau (18171862)