Uniform Continuity
Similar to continuous functions between topological spaces, which preserve topological properties, are the uniform continuous functions between uniform spaces, which preserve uniform properties. Uniform spaces with uniform maps form a category. An isomorphism between uniform spaces is called a uniform isomorphism.
A uniformly continuous function is defined as one where inverse images of entourages are again entourages, or equivalently, one where the inverse images of uniform covers are again uniform covers.
All uniformly continuous functions are continuous with respect to the induced topologies.
Read more about this topic: Uniform Space
Famous quotes containing the words uniform and/or continuity:
“We call ourselves a free nation, and yet we let ourselves be told what cabs we can and cant take by a man at a hotel door, simply because he has a drum majors uniform on.”
—Robert Benchley (18891945)
“There is never a beginning, there is never an end, to the inexplicable continuity of this web of God, but always circular power returning into itself.”
—Ralph Waldo Emerson (18031882)