Uniformizable Space
In mathematics, a topological space X is uniformizable if there exists a uniform structure on X which induces the topology of X. Equivalently, X is uniformizable if and only if it is homeomorphic to a uniform space (equipped with the topology induced by the uniform structure).
Any (pseudo)metrizable space is uniformizable since the (pseudo)metric uniformity induces the (pseudo)metric topology. The converse fails: There are uniformizable spaces which are not (pseudo)metrizable. However, it is true that the topology of a uniformizable space can always be induced by a family (mathematics) of pseudometrics; indeed, this is because any uniformity on a set X can be defined by a family of pseudometrics.
Showing that a space is uniformizable is much simpler than showing it is metrizable. In fact, uniformizability is equivalent to a common separation axiom:
- A topological space is uniformizable if and only if it is completely regular.
Read more about Uniformizable Space: Induced Uniformity, Fine Uniformity
Famous quotes containing the word space:
“Play is a major avenue for learning to manage anxiety. It gives the child a safe space where she can experiment at will, suspending the rules and constraints of physical and social reality. In play, the child becomes master rather than subject.... Play allows the child to transcend passivity and to become the active doer of what happens around her.”
—Alicia F. Lieberman (20th century)