Some Ontology
A set is pure if all of its members are sets, all members of its members are sets, and so on. For example, the set containing only the empty set is a nonempty pure set. In modern set theory, it is common to restrict attention to the von Neumann universe of pure sets, and many systems of axiomatic set theory are designed to axiomatize the pure sets only. There are many technical advantages to this restriction, and little generality is lost, since essentially all mathematical concepts can be modeled by pure sets. Sets in the von Neumann universe are organized into a cumulative hierarchy, based on how deeply their members, members of members, etc. are nested. Each set in this hierarchy is assigned (by transfinite recursion) an ordinal number α, known as its rank. The rank of a pure set X is defined to be the least upper bound of all successors of ranks of members of X. For example, the empty set is assigned rank 0, while the set containing only the empty set is assigned rank 1. For each ordinal α, the set Vα is defined to consist of all pure sets with rank less than α. The entire von Neumann universe is denoted V.
Read more about this topic: Set Theory