Set Theory - Axiomatic Set Theory

Axiomatic Set Theory

Elementary set theory can be studied informally and intuitively, and so can be taught in primary schools using Venn diagrams. The intuitive approach tacitly assumes that a set may be formed from the class of all objects satisfying any particular defining condition. This assumption gives rise to paradoxes, the simplest and best known of which are Russell's paradox and the Burali-Forti paradox. Axiomatic set theory was originally devised to rid set theory of such paradoxes.

The most widely studied systems of axiomatic set theory imply that all sets form a cumulative hierarchy. Such systems come in two flavors, those whose ontology consists of:

  • Sets alone. This includes the most common axiomatic set theory, Zermelo–Fraenkel set theory (ZFC), which includes the axiom of choice. Fragments of ZFC include:
    • Zermelo set theory, which replaces the axiom schema of replacement with that of separation;
    • General set theory, a small fragment of Zermelo set theory sufficient for the Peano axioms and finite sets;
    • Kripke-Platek set theory, which omits the axioms of infinity, powerset, and choice, and weakens the axiom schemata of separation and replacement.
  • Sets and proper classes. This includes Von Neumann-Bernays-Gödel set theory, which has the same strength as ZFC for theorems about sets alone, and Morse-Kelley set theory, which is stronger than ZFC.

The above systems can be modified to allow urelements, objects that can be members of sets but that are not themselves sets and do not have any members.

The systems of New Foundations NFU (allowing urelements) and NF (lacking them) are not based on a cumulative hierarchy. NF and NFU include a "set of everything," relative to which every set has a complement. In these systems urelements matter, because NF, but not NFU, produces sets for which the axiom of choice does not hold.

Systems of constructive set theory, such as CST, CZF, and IZF, embed their set axioms in intuitionistic logic instead of first order logic. Yet other systems accept standard first order logic but feature a nonstandard membership relation. These include rough set theory and fuzzy set theory, in which the value of an atomic formula embodying the membership relation is not simply True or False. The Boolean-valued models of ZFC are a related subject.

An enrichment of ZFC called Internal Set Theory was proposed by Edward Nelson in 1977.

Read more about this topic:  Set Theory

Famous quotes containing the words axiomatic, set and/or theory:

    It is ... axiomatic that we should all think of ourselves as being more sensitive than other people because, when we are insensitive in our dealings with others, we cannot be aware of it at the time: conscious insensitivity is a self-contradiction.
    —W.H. (Wystan Hugh)

    Thus all probable reasoning is nothing but a species of sensation. ‘Tis not solely in poetry and music, we must follow our taste and sentiment, but likewise in philosophy, When I am convinc’d of any principle, ‘tis only an idea which strikes more strongly upon me. When I give the preference to one set of arguments above another, I do nothing but decide from my feeling concerning the superiority of their influence.
    David Hume (1711–1776)

    Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.
    Willard Van Orman Quine (b. 1908)