Groups of Higher Rank
Abelian groups of rank greater than 1 are sources of interesting examples. For instance, for every cardinal d there exist torsion-free abelian groups of rank d that are indecomposable, i.e. cannot be expressed as a direct sum of a pair of their proper subgroups. These examples demonstrate that torsion-free abelian group of rank greater than 1 cannot be simply built by direct sums from torsion-free abelian groups of rank 1, whose theory is well-understood. Moreover, for every integer n ≥ 3, there is a torsion-free abelian group of rank 2n − 2 that is simultaneously a sum of two indecomposable groups, and a sum of n indecomposable groups. Hence even the number of indecomposable summands of a group of an even rank greater or equal than 4 is not well-defined.
Another result about non-uniqueness of direct sum decompositions is due to A.L.S. Corner: given integers n ≥ k ≥ 1, there exists a torsion-free abelian group A of rank n such that for any partition n = r1 + ... + rk into k natural summands, the group A is the direct sum of k indecomposable subgroups of ranks r1, r2, ..., rk. Thus the sequence of ranks of indecomposable summands in a certain direct sum decomposition of a torsion-free abelian group of finite rank is very far from being an invariant of A.
Other surprising examples include torsion-free rank 2 groups An,m and Bn,m such that An is isomorphic to Bn if and only if n is divisible by m.
For abelian groups of infinite rank, there is an example of a group K and a subgroup G such that
- K is indecomposable;
- K is generated by G and a single other element; and
- Every nonzero direct summand of G is decomposable.
Read more about this topic: Rank Of An Abelian Group
Famous quotes containing the words groups of, groups, higher and/or rank:
“Some of the greatest and most lasting effects of genuine oratory have gone forth from secluded lecture desks into the hearts of quiet groups of students.”
—Woodrow Wilson (18561924)
“If we can learn ... to look at the ways in which various groups appropriate and use the mass-produced art of our culture ... we may well begin to understand that although the ideological power of contemporary cultural forms is enormous, indeed sometimes even frightening, that power is not yet all-pervasive, totally vigilant, or complete.”
—Janice A. Radway (b. 1949)
“But there are higher secrets of culture, which are not for the apprentices, but for proficients. These are lessons only for the brave. We must know our friends under ugly masks. The calamities are our friends.”
—Ralph Waldo Emerson (18031882)
“Oxford is a little aristocracy in itself, numerous and dignified enough to rank with other estates in the realm; and where fame and secular promotion are to be had for study, and in a direction which has the unanimous respect of all cultivated nations.”
—Ralph Waldo Emerson (18031882)