Groups of Higher Rank
Abelian groups of rank greater than 1 are sources of interesting examples. For instance, for every cardinal d there exist torsion-free abelian groups of rank d that are indecomposable, i.e. cannot be expressed as a direct sum of a pair of their proper subgroups. These examples demonstrate that torsion-free abelian group of rank greater than 1 cannot be simply built by direct sums from torsion-free abelian groups of rank 1, whose theory is well-understood. Moreover, for every integer n ≥ 3, there is a torsion-free abelian group of rank 2n − 2 that is simultaneously a sum of two indecomposable groups, and a sum of n indecomposable groups. Hence even the number of indecomposable summands of a group of an even rank greater or equal than 4 is not well-defined.
Another result about non-uniqueness of direct sum decompositions is due to A.L.S. Corner: given integers n ≥ k ≥ 1, there exists a torsion-free abelian group A of rank n such that for any partition n = r1 + ... + rk into k natural summands, the group A is the direct sum of k indecomposable subgroups of ranks r1, r2, ..., rk. Thus the sequence of ranks of indecomposable summands in a certain direct sum decomposition of a torsion-free abelian group of finite rank is very far from being an invariant of A.
Other surprising examples include torsion-free rank 2 groups An,m and Bn,m such that An is isomorphic to Bn if and only if n is divisible by m.
For abelian groups of infinite rank, there is an example of a group K and a subgroup G such that
- K is indecomposable;
- K is generated by G and a single other element; and
- Every nonzero direct summand of G is decomposable.
Read more about this topic: Rank Of An Abelian Group
Famous quotes containing the words groups, higher and/or rank:
“Only the groups which exclude us have magic.”
—Mason Cooley (b. 1927)
“Men may rise on stepping-stones
Of their dead selves to higher things.”
—Alfred Tennyson (18091892)
“Its whether will ye be a rank robbers wife,
Or will ye die by my wee pen knife?
Its Ill not be a rank robbers wife,
But Ill rather die by your wee pen knife.
He s killed this may and he s laid her by,
For to bear the red rose company.”
—Unknown. Babylon; or, The Bonnie Banks o Fordie (l. 914)