Rank Of An Abelian Group
In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup. Torsion-free abelian groups of rank 1 have been completely classified. However, the theory of abelian groups of higher rank is more involved.
The term rank has a different meaning in the context of elementary abelian groups.
Read more about Rank Of An Abelian Group: Definition, Properties, Groups of Higher Rank, Generalization
Famous quotes containing the words rank and/or group:
“Oxford is a little aristocracy in itself, numerous and dignified enough to rank with other estates in the realm; and where fame and secular promotion are to be had for study, and in a direction which has the unanimous respect of all cultivated nations.”
—Ralph Waldo Emerson (18031882)
“The government of the United States at present is a foster-child of the special interests. It is not allowed to have a voice of its own. It is told at every move, Dont do that, You will interfere with our prosperity. And when we ask: where is our prosperity lodged? a certain group of gentlemen say, With us.”
—Woodrow Wilson (18561924)