Rank of An Abelian Group

Rank Of An Abelian Group

In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup. Torsion-free abelian groups of rank 1 have been completely classified. However, the theory of abelian groups of higher rank is more involved.

The term rank has a different meaning in the context of elementary abelian groups.

Read more about Rank Of An Abelian Group:  Definition, Properties, Groups of Higher Rank, Generalization

Famous quotes containing the words rank of, rank and/or group:

    A private should preserve a respectful attitude toward his superiors, and should seldom or never proceed so far as to offer suggestions to his general in the field. If the battle is not being conducted to suit him, it is better for him to resign. By the etiquette of war, it is permitted to none below the rank of newspaper correspondent to dictate to the general in the field.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    Its whether will ye be a rank robber’s wife,
    Or will ye die by my wee pen knife?

    Its I’ll not be a rank robber’s wife,
    But I’ll rather die by your wee pen knife.

    He ‘s killed this may and he ‘s laid her by,
    For to bear the red rose company.
    Unknown. Babylon; or, The Bonnie Banks o’ Fordie (l. 9–14)

    Caprice, independence and rebellion, which are opposed to the social order, are essential to the good health of an ethnic group. We shall measure the good health of this group by the number of its delinquents. Nothing is more immobilizing than the spirit of deference.
    Jean Dubuffet (1901–1985)