Rank of An Abelian Group - Properties

Properties

  • The rank of an abelian group A coincides with the dimension of the Q-vector space AQ. If A is torsion-free then the canonical map AAQ is injective and the rank of A is the minimum dimension of Q-vector space containing A as an abelian subgroup. In particular, any intermediate group Zn < A < Qn has rank n.
  • Abelian groups of rank 0 are exactly the periodic abelian groups.
  • The group Q of rational numbers has rank 1. Torsion-free abelian groups of rank 1 are realized as subgroups of Q and there is a satisfactory classification of them up to isomorphism. By contrast, there is no satisfactory classification of torsion-free abelian groups of rank 2.
  • Rank is additive over short exact sequences: if
is a s.e.s. of abelian groups then rk B = rk A + rk C. This follows from the flatness of Q and the corresponding fact for vector spaces.
  • Rank is additive over arbitrary direct sums:
where the sum in the right hand side uses cardinal arithmetic.

Read more about this topic:  Rank Of An Abelian Group

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)