Properties
- The rank of an abelian group A coincides with the dimension of the Q-vector space A ⊗ Q. If A is torsion-free then the canonical map A → A ⊗ Q is injective and the rank of A is the minimum dimension of Q-vector space containing A as an abelian subgroup. In particular, any intermediate group Zn < A < Qn has rank n.
- Abelian groups of rank 0 are exactly the periodic abelian groups.
- The group Q of rational numbers has rank 1. Torsion-free abelian groups of rank 1 are realized as subgroups of Q and there is a satisfactory classification of them up to isomorphism. By contrast, there is no satisfactory classification of torsion-free abelian groups of rank 2.
- Rank is additive over short exact sequences: if
- is a s.e.s. of abelian groups then rk B = rk A + rk C. This follows from the flatness of Q and the corresponding fact for vector spaces.
- Rank is additive over arbitrary direct sums:
- where the sum in the right hand side uses cardinal arithmetic.
Read more about this topic: Rank Of An Abelian Group
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
Related Phrases
Related Words