Definition
A subset {aα} of an abelian group is linearly independent (over Z) if the only linear combination of these elements that is equal to zero is trivial: if
where all but finitely many coefficients nα are zero (so that the sum is, in effect, finite), then all coefficients are 0. Any two maximal linearly independent sets in A have the same cardinality, which is called the rank of A.
Rank of an abelian group is analogous to the dimension of a vector space. The main difference with the case of vector space is a presence of torsion. An element of an abelian group A is classified as torsion if its order is finite. The set of all torsion elements is a subgroup, called the torsion subgroup and denoted T(A). A group is called torsion-free if it has no non-trivial torsion elements. The factor-group A/T(A) is the unique maximal torsion-free quotient of A and its rank coincides with the rank of A.
The notion of rank with analogous properties can be defined for modules over any integral domain, the case of abelian groups corresponds to modules over Z.
Read more about this topic: Rank Of An Abelian Group
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)