Rank of An Abelian Group - Definition

Definition

A subset {aα} of an abelian group is linearly independent (over Z) if the only linear combination of these elements that is equal to zero is trivial: if

where all but finitely many coefficients nα are zero (so that the sum is, in effect, finite), then all coefficients are 0. Any two maximal linearly independent sets in A have the same cardinality, which is called the rank of A.

Rank of an abelian group is analogous to the dimension of a vector space. The main difference with the case of vector space is a presence of torsion. An element of an abelian group A is classified as torsion if its order is finite. The set of all torsion elements is a subgroup, called the torsion subgroup and denoted T(A). A group is called torsion-free if it has no non-trivial torsion elements. The factor-group A/T(A) is the unique maximal torsion-free quotient of A and its rank coincides with the rank of A.

The notion of rank with analogous properties can be defined for modules over any integral domain, the case of abelian groups corresponds to modules over Z.

Read more about this topic:  Rank Of An Abelian Group

Famous quotes containing the word definition:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)