Definition
A subset {aα} of an abelian group is linearly independent (over Z) if the only linear combination of these elements that is equal to zero is trivial: if
where all but finitely many coefficients nα are zero (so that the sum is, in effect, finite), then all coefficients are 0. Any two maximal linearly independent sets in A have the same cardinality, which is called the rank of A.
Rank of an abelian group is analogous to the dimension of a vector space. The main difference with the case of vector space is a presence of torsion. An element of an abelian group A is classified as torsion if its order is finite. The set of all torsion elements is a subgroup, called the torsion subgroup and denoted T(A). A group is called torsion-free if it has no non-trivial torsion elements. The factor-group A/T(A) is the unique maximal torsion-free quotient of A and its rank coincides with the rank of A.
The notion of rank with analogous properties can be defined for modules over any integral domain, the case of abelian groups corresponds to modules over Z.
Read more about this topic: Rank Of An Abelian Group
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)