Quantum Cohomology

In mathematics, specifically in symplectic topology and algebraic geometry, a quantum cohomology ring is an extension of the ordinary cohomology ring of a closed symplectic manifold. It comes in two versions, called small and big; in general, the latter is more complicated and contains more information than the former. In each, the choice of coefficient ring (typically a Novikov ring, described below) significantly affects its structure, as well.

While the cup product of ordinary cohomology describes how subspaces of the manifold intersect each other, the quantum cup product of quantum cohomology describes how subspaces intersect in a "fuzzy", "quantum" way. More precisely, they intersect if they are connected via one or more pseudoholomorphic curves. Gromov-Witten invariants, which count these curves, appear as coefficients in expansions of the quantum cup product.

Because it expresses a structure or pattern for Gromov-Witten invariants, quantum cohomology has important implications for enumerative geometry. It also connects to many ideas in mathematical physics and mirror symmetry. In particular, it is ring-isomorphic to Floer homology.

Throughout this article, X is a closed symplectic manifold with symplectic form ω.

Read more about Quantum Cohomology:  Novikov Ring, Small Quantum Cohomology, Geometric Interpretation, Example, Properties of The Small Quantum Cup Product, Dubrovin Connection, Big Quantum Cohomology

Famous quotes containing the word quantum:

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)