Manifold

Manifold

In mathematics, a manifold of dimension n is a topological space that near each point resembles n-dimensional Euclidean space. More precisely, each point of an n-dimensional manifold has a neighbourhood that is homeomorphic to the Euclidean space of dimension n. Lines and circles, but not figure eights, are one-dimensional manifolds. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, which can all be realized in three dimensions, but also the Klein bottle and real projective plane which cannot.

Read more about Manifold.

Famous quotes containing the word manifold:

    She ran down the stair
    A twelve-year-old darling
    And laughing and calling
    She tossed her bright hair;
    —John Streeter Manifold (b. 1915)

    Before abstraction everything is one, but one like chaos; after abstraction everything is united again, but this union is a free binding of autonomous, self-determined beings. Out of a mob a society has developed, chaos has been transformed into a manifold world.
    Novalis [Friedrich Von Hardenberg] (1772–1801)

    Thy love is such I can no way repay,
    The heavens reward thee manifold I pray.
    Then while we live, in love lets so persever,
    That when we live no more, we may live ever.
    Anne Bradstreet (c. 1612–1672)