Let
be the cohomology of X modulo torsion. Define the small quantum cohomology with coefficients in Λ to be
Its elements are finite sums of the form
The small quantum cohomology is a graded R-module with
The ordinary cohomology H*(X) embeds into QH*(X, Λ) via, and QH*(X, Λ) is generated as a Λ-module by H*(X).
For any two cohomology classes a, b in H*(X) of pure degree, and for any A in, define (a∗b)A to be the unique element of H*(X) such that
(The right-hand side is a genus-0, 3-point Gromov-Witten invariant.) Then define
This extends by linearity to a well-defined Λ-bilinear map
called the small quantum cup product.
Read more about this topic: Quantum Cohomology
Famous quotes containing the words small and/or quantum:
“Tradition means giving votes to the most obscure of all classesour ancestors. It is the democracy of the dead. Tradition refuses to submit to the small and arrogant oligarchy of those who merely happen to be walking around.”
—Gilbert Keith Chesterton (18741936)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)