In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p + q. This defines an associative (and distributive) graded commutative product operation in cohomology, turning the cohomology of a space X into a graded ring, H∗(X), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944.
Read more about Cup Product: Definition, Properties, Interpretation, Examples, Massey Products
Famous quotes containing the words cup and/or product:
“The cup of Morgan Fay is shattered.
Life is a bitter sage,
And we are weary infants
In a palsied age.”
—Allen Tate (18991979)
“The end product of child raising is not only the child but the parents, who get to go through each stage of human development from the other side, and get to relive the experiences that shaped them, and get to rethink everything their parents taught them. The get, in effect, to reraise themselves and become their own person.”
—Frank Pittman (20th century)