Probability Density Function - Absolutely Continuous Univariate Distributions

Absolutely Continuous Univariate Distributions

A probability density function is most commonly associated with absolutely continuous univariate distributions. A random variable X has density f, where f is a non-negative Lebesgue-integrable function, if:

Hence, if F is the cumulative distribution function of X, then:

and (if f is continuous at x)

Intuitively, one can think of f(x) dx as being the probability of X falling within the infinitesimal interval .

Read more about this topic:  Probability Density Function

Famous quotes containing the words absolutely and/or continuous:

    The sole work and deed of universal freedom is therefore death, a death too which has no inner significance or filling, for what is negated is the empty point of the absolutely free self. It is thus the coldest and meanest of all deaths, with no more significance than cutting off a head of cabbage or swallowing a mouthful of water.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    The problem, thus, is not whether or not women are to combine marriage and motherhood with work or career but how they are to do so—concomitantly in a two-role continuous pattern or sequentially in a pattern involving job or career discontinuities.
    Jessie Bernard (20th century)