Absolutely Continuous Univariate Distributions
A probability density function is most commonly associated with absolutely continuous univariate distributions. A random variable X has density f, where f is a non-negative Lebesgue-integrable function, if:
Hence, if F is the cumulative distribution function of X, then:
and (if f is continuous at x)
Intuitively, one can think of f(x) dx as being the probability of X falling within the infinitesimal interval .
Read more about this topic: Probability Density Function
Famous quotes containing the words absolutely and/or continuous:
“There are souls that are incurable and lost to the rest of society. Deprive them of one means of folly, they will invent ten thousand others. They will create subtler, wilder methods, methods that are absolutely DESPERATE. Nature herself is fundamentally antisocial, it is only by a usurpation of powers that the organized body of society opposes the natural inclination of humanity.”
—Antonin Artaud (18961948)
“We read poetry because the poets, like ourselves, have been haunted by the inescapable tyranny of time and death; have suffered the pain of loss, and the more wearing, continuous pain of frustration and failure; and have had moods of unlooked-for release and peace. They have known and watched in themselves and others.”
—Elizabeth Drew (18871965)