In probability theory and statistics, the exponential distribution (a.k.a. negative exponential distribution) is a family of continuous probability distributions. It describes the time between events in a Poisson process, i.e. a process in which events occur continuously and independently at a constant average rate. It is the continuous analogue of the geometric distribution.
Note that the exponential distribution is not the same as the class of exponential families of distributions, which is a large class of probability distributions that includes the exponential distribution as one of its members, but also includes the normal distribution, binomial distribution, gamma distribution, Poisson, and many others.
Read more about Exponential Distribution: Parameter Estimation, Generating Exponential Variates, Related Distributions
Famous quotes containing the word distribution:
“The question for the country now is how to secure a more equal distribution of property among the people. There can be no republican institutions with vast masses of property permanently in a few hands, and large masses of voters without property.... Let no man get by inheritance, or by will, more than will produce at four per cent interest an income ... of fifteen thousand dollars] per year, or an estate of five hundred thousand dollars.”
—Rutherford Birchard Hayes (18221893)