Uniform Distribution (continuous)

Uniform Distribution (continuous)

In probability theory and statistics, the continuous uniform distribution or rectangular distribution is a family of probability distributions such that for each member of the family, all intervals of the same length on the distribution's support are equally probable. The support is defined by the two parameters, a and b, which are its minimum and maximum values. The distribution is often abbreviated U(a,b). It is the maximum entropy probability distribution for a random variate X under no constraint other than that it is contained in the distribution's support.

Read more about Uniform Distribution (continuous):  Standard Uniform, Related Distributions, Relationship To Other Functions, Applications

Famous quotes containing the words uniform and/or distribution:

    We call ourselves a free nation, and yet we let ourselves be told what cabs we can and can’t take by a man at a hotel door, simply because he has a drum major’s uniform on.
    Robert Benchley (1889–1945)

    The man who pretends that the distribution of income in this country reflects the distribution of ability or character is an ignoramus. The man who says that it could by any possible political device be made to do so is an unpractical visionary. But the man who says that it ought to do so is something worse than an ignoramous and more disastrous than a visionary: he is, in the profoundest Scriptural sense of the word, a fool.
    George Bernard Shaw (1856–1950)