In molecular kinetic theory in physics, a particle's distribution function is a function of seven variables, which gives the number of particles per unit volume in phase space. It is the number of particles per unit volume having approximately the velocity near the place and time . The usual normalization of the distribution function is
Here, N is the total number of particles and n is the number density of particles - the number of particles per unit volume, or the density divided by the mass of individual particles.
A distribution function may be specialised with respect to a particular set of dimensions. E.g. take the quantum mechanical six dimensional phase space, and multiply by the total space volume, to give the momentum distribution i.e. the number of particles in the momentum phase space having approximately the momentum .
Particle distribution functions are often used in plasma physics to describe wave-particle interactions and velocity-space instabilities. Distribution functions are also used in fluid mechanics, statistical mechanics and nuclear physics.
The basic distribution function uses the Boltzmann constant and temperature with the number density to modify the normal distribution:
Related distribution functions may allow bulk fluid flow, in which case the velocity origin is shifted, so that the exponent's numerator is ; is the bulk velocity of the fluid. Distribution functions may also feature non-isotropic temperatures, in which each term in the exponent is divided by a different temperature.
Plasma theories such as magnetohydrodynamics may assume the particles to be in thermodynamic equilibrium. In this case, the distribution function is Maxwellian. This distribution function allows fluid flow and different temperatures in the directions parallel to, and perpendicular to, the local magnetic field. More complex distribution functions may also be used since plasmas are rarely in thermal equilibrium.
The mathematical analog of a distribution is a measure; the time evolution of a measure on a phase space is the topic of study in dynamical systems.
Famous quotes containing the words distribution and/or function:
“The man who pretends that the distribution of income in this country reflects the distribution of ability or character is an ignoramus. The man who says that it could by any possible political device be made to do so is an unpractical visionary. But the man who says that it ought to do so is something worse than an ignoramous and more disastrous than a visionary: he is, in the profoundest Scriptural sense of the word, a fool.”
—George Bernard Shaw (18561950)
“... The states one function is to give.
The bud must bloom till blowsy blown
Its petals loosen and are strown;
And thats a fate it cant evade
Unless twould rather wilt than fade.”
—Robert Frost (18741963)