Pin Group

In mathematics, the pin group is a certain subgroup of the Clifford algebra associated to a quadratic space. It maps 2-to-1 to the orthogonal group, just as the spin group maps 2-to-1 to the special orthogonal group.

In general the map from the Pin group to the orthogonal group is not onto or a universal covering space, but if the quadratic form is definite (and dimension is greater than 2), it is both.

The non-trivial element of the kernel is denoted −1, which should not be confused with the orthogonal transform of reflection through the origin, generally denoted −I.

Read more about Pin Group:  Definite Form, Indefinite Form, As Topological Group, Construction, Center, Name

Famous quotes containing the words pin and/or group:

    A man is a beggar who only lives to the useful, and, however he may serve as a pin or rivet in the social machine, cannot be said to have arrived at self-possession.
    Ralph Waldo Emerson (1803–1882)

    Unless a group of workers know their work is under surveillance, that they are being rated as fairly as human beings, with the fallibility that goes with human judgment, can rate them, and that at least an attempt is made to measure their worth to an organization in relative terms, they are likely to sink back on length of service as the sole reason for retention and promotion.
    Mary Barnett Gilson (1877–?)