Spin Group

In mathematics the spin group Spin(n) is the double cover of the special orthogonal group SO(n), such that there exists a short exact sequence of Lie groups

As a Lie group Spin(n) therefore shares its dimension, n (n − 1)/2, and its Lie algebra with the special orthogonal group. For n > 2 , Spin(n) is simply connected and so coincides with the universal cover of SO(n).

The non-trivial element of the kernel is denoted −1 , which should not be confused with the orthogonal transform of reflection through the origin, generally denoted −I .

Spin(n) can be constructed as a subgroup of the invertible elements in the Clifford algebra Cℓ(n).

Read more about Spin Group:  Accidental Isomorphisms, Indefinite Signature, Topological Considerations, Center, Quotient Groups, Discrete Subgroups

Famous quotes containing the words spin and/or group:

    In tragic life, God wot,
    No villain need be! Passions spin the plot:
    We are betrayed by what is false within.
    George Meredith (1828–1909)

    Instead of seeing society as a collection of clearly defined “interest groups,” society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.
    Diana Crane (b. 1933)