In mathematics the spin group Spin(n) is the double cover of the special orthogonal group SO(n), such that there exists a short exact sequence of Lie groups
As a Lie group Spin(n) therefore shares its dimension, n (n − 1)/2, and its Lie algebra with the special orthogonal group. For n > 2 , Spin(n) is simply connected and so coincides with the universal cover of SO(n).
The non-trivial element of the kernel is denoted −1 , which should not be confused with the orthogonal transform of reflection through the origin, generally denoted −I .
Spin(n) can be constructed as a subgroup of the invertible elements in the Clifford algebra Cℓ(n).
Read more about Spin Group: Accidental Isomorphisms, Indefinite Signature, Topological Considerations, Center, Quotient Groups, Discrete Subgroups
Famous quotes containing the words spin and/or group:
“Words can have no single fixed meaning. Like wayward electrons, they can spin away from their initial orbit and enter a wider magnetic field. No one owns them or has a proprietary right to dictate how they will be used.”
—David Lehman (b. 1948)
“The government of the United States at present is a foster-child of the special interests. It is not allowed to have a voice of its own. It is told at every move, Dont do that, You will interfere with our prosperity. And when we ask: where is our prosperity lodged? a certain group of gentlemen say, With us.”
—Woodrow Wilson (18561924)