Pin Group - Construction

Construction

The two pin groups correspond to the two central extensions

The group structure on Spin(V) (the connected component of determinant 1) is already determined; the group structure on the other component is determined up to the center, and thus has a ±1 ambiguity.

The two extensions are distinguished by whether the preimage of a reflection squares to ±1 ∈ Ker (Spin(V) → SO(V)), and the two pin groups are named accordingly. Explicitly, a reflection has order 2 in O(V), r2 = 1, so the square of the preimage of a reflection (which has determinant one) must be in the kernel of Spin±(V) → SO(V), so, and either choice determines a pin group (since all reflections are conjugate by an element of SO(V), which is connected, all reflections must square to the same value).

Concretely, in Pin+, has order 2, and the preimage of a subgroup {1, r} is C2 × C2: if one repeats the same reflection twice, one gets the identity.

In Pin, has order 4, and the preimage of a subgroup {1, r} is C4: if one repeats the same reflection twice, one gets "a rotation by 2π"—the non-trivial element of Spin(V) → SO(V) can be interpreted as "rotation by 2π" (every axis yields the same element).

Read more about this topic:  Pin Group

Famous quotes containing the word construction:

    No real “vital” character in fiction is altogether a conscious construction of the author. On the contrary, it may be a sort of parasitic growth upon the author’s personality, developing by internal necessity as much as by external addition.
    —T.S. (Thomas Stearns)

    No construction stiff working overtime takes more stress and straining than we did just to stay high.
    Gus Van Sant, U.S. screenwriter and director, and Dan Yost. Bob Hughes (Matt Dillon)

    The construction of life is at present in the power of facts far more than convictions.
    Walter Benjamin (1892–1940)