Pin Group - Definite Form

Definite Form

The pin group of a definite form maps onto the orthogonal group, and each component is simply connected: it double covers the orthogonal group. The pin groups for a positive definite quadratic form Q and for its negative −Q are not isomorphic, but the orthogonal groups are.

In terms of the standard forms, O(n, 0) = O(0,n), but Pin(n, 0) and Pin(0, n) are not isomorphic. Using the "+" sign convention for Clifford algebras (where ), one writes

and these both map onto O(n) = O(n, 0) = O(0, n).

By contrast, we have the natural isomorphism Spin(n, 0) ≅ Spin(0, n) and they are both the (unique) double cover of the special orthogonal group SO(n), which is the (unique) universal cover for n ≥ 3.

Read more about this topic:  Pin Group

Famous quotes containing the words definite and/or form:

    Our tradition of political thought had its definite beginning in the teachings of Plato and Aristotle. I believe it came to a no less definite end in the theories of Karl Marx.
    Hannah Arendt (1906–1975)

    At all events, as she, Ulster, cannot have the status quo, nothing remains for her but complete union or the most extreme form of Home Rule; that is, separation from both England and Ireland.
    George Bernard Shaw (1856–1950)