Partially Ordered Set

In mathematics, especially order theory, a partially ordered set (or poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation that indicates that, for certain pairs of elements in the set, one of the elements precedes the other. Such a relation is called a partial order to reflect the fact that not every pair of elements need be related: for some pairs, it may be that neither element precedes the other in the poset. Thus, partial orders generalize the more familiar total orders, in which every pair is related. A finite poset can be visualized through its Hasse diagram, which depicts the ordering relation.

A familiar real-life example of a partially ordered set is a collection of people ordered by genealogical descendancy. Some pairs of people bear the descendant-ancestor relationship, but other pairs bear no such relationship.

Read more about Partially Ordered Set:  Formal Definition, Examples, Extrema, Orders On The Cartesian Product of Partially Ordered Sets, Strict and Non-strict Partial Orders, Inverse and Order Dual, Number of Partial Orders, Linear Extension, In Category Theory, Partial Orders in Topological Spaces, Interval

Famous quotes containing the words partially, ordered and/or set:

    I remember once dreaming of pushing a canoe up the rivers of Maine, and that, when I had got so high that the channels were dry, I kept on through the ravines and gorges, nearly as well as before, by pushing a little harder, and now it seemed to me that my dream was partially realized.
    Henry David Thoreau (1817–1862)

    I am aware that I have been on many a man’s premises, and might have been legally ordered off, but I am not aware that I have been in many men’s houses.
    Henry David Thoreau (1817–1862)

    Persons who insist to themselves that under one set of conditions only can they lead interesting and satisfying lives lay themselves open to bitter disappointments and frustrations.
    Hortense Odlum (1892–?)