Partially Ordered Set - Number of Partial Orders

Number of Partial Orders

Sequence A001035 in OEIS gives the number of partial orders on a set of n labeled elements:

Number of n-element binary relations of different types
n all transitive reflexive preorder partial order total preorder total order equivalence relation
0 1 1 1 1 1 1 1 1
1 2 2 1 1 1 1 1 1
2 16 13 4 4 3 3 2 2
3 512 171 64 29 19 13 6 5
4 65536 3994 4096 355 219 75 24 15
OEIS A002416 A006905 A053763 A000798 A001035 A000670 A000142 A000110

The number of strict partial orders is the same as that of partial orders.

If we count only up to isomorphism, we get 1, 1, 2, 5, 16, 63, 318, … (sequence A000112 in OEIS).

Read more about this topic:  Partially Ordered Set

Famous quotes containing the words number of, number, partial and/or orders:

    The more elevated a culture, the richer its language. The number of words and their combinations depends directly on a sum of conceptions and ideas; without the latter there can be no understandings, no definitions, and, as a result, no reason to enrich a language.
    Anton Pavlovich Chekhov (1860–1904)

    I will not adopt that ungenerous and impolitic custom so common with novel writers, of degrading by their contemptuous censure the very performances, to the number of which they are themselves adding—joining with their greatest enemies in bestowing the harshest epithets on such works, and scarcely ever permitting them to be read by their own heroine, who, if she accidentally take up a novel, is sure to turn over its insipid leaves with disgust.
    Jane Austen (1775–1817)

    You must not be partial in judging: hear out the small and the great alike; you shall not be intimidated by anyone, for the judgment is God’s.
    Bible: Hebrew, Deuteronomy 1:17.

    God is a foreman with certain definite views
    Who orders life in shifts of work and leisure.
    Seamus Heaney (b. 1939)