Partially Ordered Set - Formal Definition

Formal Definition

A partial order is a binary relation "≤" over a set P which is reflexive, antisymmetric, and transitive, i.e., for all a, b, and c in P, we have that:

  • a ≤ a (reflexivity);
  • if a ≤ b and b ≤ a then a = b (antisymmetry);
  • if a ≤ b and b ≤ c then a ≤ c (transitivity).

In other words, a partial order is an antisymmetric preorder.

A set with a partial order is called a partially ordered set (also called a poset). The term ordered set is sometimes also used for posets, as long as it is clear from the context that no other kinds of orders are meant. In particular, totally ordered sets can also be referred to as "ordered sets", especially in areas where these structures are more common than posets.

For a, b, elements of a partially ordered set P, if a ≤ b or b ≤ a, then a and b are comparable. Otherwise they are incomparable. A partial order under which every pair of elements is comparable is called a total order or linear order; a totally ordered set is also called a chain (e.g., the natural numbers with their standard order). A subset of a poset in which no two distinct elements are comparable is called an antichain.

Read more about this topic:  Partially Ordered Set

Famous quotes containing the words formal and/or definition:

    On every formal visit a child ought to be of the party, by way of provision for discourse.
    Jane Austen (1775–1817)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)