Partially Ordered Set - Strict and Non-strict Partial Orders

Strict and Non-strict Partial Orders

In some contexts, the partial order defined above is called a non-strict (or reflexive, or weak) partial order. In these contexts a strict (or irreflexive) partial order "<" is a binary relation that is irreflexive and transitive, and therefore asymmetric. In other words, asymmetric (hence irreflexive) and transitive.

Thus, for all a, b, and c in P, we have that:

  • ¬(a < a) (irreflexivity);
  • if a < b then ¬(b < a) (asymmetry); and
  • if a < b and b < c then a < c (transitivity).

There is a 1-to-1 correspondence between all non-strict and strict partial orders.

If "≤" is a non-strict partial order, then the corresponding strict partial order "<" is the reflexive reduction given by:

a < b if and only if (ab and ab)

Conversely, if "<" is a strict partial order, then the corresponding non-strict partial order "≤" is the reflexive closure given by:

ab if and only if a < b or a = b.

This is the reason for using the notation "≤".

Strict partial orders are useful because they correspond more directly to directed acyclic graphs (dags): every strict partial order is a dag, and the transitive closure of a dag is both a strict partial order and also a dag itself.

Read more about this topic:  Partially Ordered Set

Famous quotes containing the words strict, partial and/or orders:

    To safeguard one’s health at the cost of too strict a diet is a tiresome illness indeed.
    François, Duc De La Rochefoucauld (1613–1680)

    And meanwhile we have gone on living,
    Living and partly living,
    Picking together the pieces,
    Gathering faggots at nightfall,
    Building a partial shelter,
    For sleeping and eating and drinking and laughter.
    —T.S. (Thomas Stearns)

    I’ve got orders to obey, thank God.
    Robert Bolt (1924–1995)