Strict and Non-strict Partial Orders
In some contexts, the partial order defined above is called a non-strict (or reflexive, or weak) partial order. In these contexts a strict (or irreflexive) partial order "<" is a binary relation that is irreflexive and transitive, and therefore asymmetric. In other words, asymmetric (hence irreflexive) and transitive.
Thus, for all a, b, and c in P, we have that:
- ¬(a < a) (irreflexivity);
- if a < b then ¬(b < a) (asymmetry); and
- if a < b and b < c then a < c (transitivity).
There is a 1-to-1 correspondence between all non-strict and strict partial orders.
If "≤" is a non-strict partial order, then the corresponding strict partial order "<" is the reflexive reduction given by:
- a < b if and only if (a ≤ b and a ≠ b)
Conversely, if "<" is a strict partial order, then the corresponding non-strict partial order "≤" is the reflexive closure given by:
- a ≤ b if and only if a < b or a = b.
This is the reason for using the notation "≤".
Strict partial orders are useful because they correspond more directly to directed acyclic graphs (dags): every strict partial order is a dag, and the transitive closure of a dag is both a strict partial order and also a dag itself.
Read more about this topic: Partially Ordered Set
Famous quotes containing the words strict and, strict, partial and/or orders:
“In a universe that is all gradations of matter, from gross to fine to finer, so that we end up with everything we are composed of in a lattice, a grid, a mesh, a mist, where particles or movements so small we cannot observe them are held in a strict and accurate web, that is nevertheless nonexistent to the eyes we use for ordinary livingin this system of fine and finer, where then is the substance of a thought?”
—Doris Lessing (b. 1919)
“One of the most horrible, yet most important, discoveries of our age has been that, if you really wish to destroy a person and turn him into an automaton, the surest method is not physical torture, in the strict sense, but simply to keep him awake, i.e., in an existential relation to life without intermission.”
—W.H. (Wystan Hugh)
“And meanwhile we have gone on living,
Living and partly living,
Picking together the pieces,
Gathering faggots at nightfall,
Building a partial shelter,
For sleeping and eating and drinking and laughter.”
—T.S. (Thomas Stearns)
“Ive got orders to obey, thank God.”
—Robert Bolt (19241995)