Normal Matrix
In mathematics, a complex square matrix A is normal if
where A* is the conjugate transpose of A. That is, a matrix is normal if it commutes with its conjugate transpose.
A matrix A with real entries satisfies A*=AT, and is therefore normal if ATA = AAT.
Normality is a convenient test for diagonalizability: a matrix is normal if and only if it is unitarily similar to a diagonal matrix, and therefore any matrix A satisfying the equation A*A=AA* is diagonalizable.
The concept of normal matrices can be extended to normal operators on infinite dimensional Hilbert spaces and to normal elements in C*-algebras. As in the matrix case, normality means commutativity is preserved, to the extent possible, in the noncommutative setting. This makes normal operators, and normal elements of C*-algebras, more amenable to analysis.
Read more about Normal Matrix: Special Cases, Consequences, Equivalent Definitions, Analogy
Famous quotes containing the words normal and/or matrix:
“When a man says that he is Jesus or Napoleon, or that the Martians are after him, or claims something else that seems outrageous to common sense, he is labeled psychotic and locked up in a madhouse. Freedom of speech is only for normal people.”
—Thomas Szasz (b. 1920)
“As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.”
—Margaret Atwood (b. 1939)