In linear algebra, a diagonal matrix is a matrix (usually a square matrix) in which the entries outside the main diagonal (↘) are all zero. The diagonal entries themselves may or may not be zero. Thus, the matrix D = (di,j) with n columns and n rows is diagonal if:
For example, the following matrix is diagonal:
The term diagonal matrix may sometimes refer to a rectangular diagonal matrix, which is an m-by-n matrix with only the entries of the form di,i possibly non-zero. For example:
- or
However, in the remainder of this article we will consider only square matrices. Any square diagonal matrix is also a symmetric matrix. Also, if the entries come from the field R or C, then it is a normal matrix as well. Equivalently, we can define a diagonal matrix as a matrix that is both upper- and lower-triangular. The identity matrix In and any square zero matrix are diagonal. A one-dimensional matrix is always diagonal.
Read more about Diagonal Matrix: Scalar Matrix, Matrix Operations, Other Properties, Uses, Operator Theory
Famous quotes containing the word matrix:
“In all cultures, the family imprints its members with selfhood. Human experience of identity has two elements; a sense of belonging and a sense of being separate. The laboratory in which these ingredients are mixed and dispensed is the family, the matrix of identity.”
—Salvador Minuchin (20th century)