Normal Matrix - Consequences

Consequences

The concept of normality is important because normal matrices are precisely those to which the spectral theorem applies: a matrix A is normal if and only if it can be represented by a diagonal matrix Λ and a unitary matrix U by the formula

where

The entries λ of diagonal matrix Λ are the eigenvalues of A, and the columns of U are the eigenvectors of A. The matching eigenvalues in Λ come in the same order as the eigenvectors are ordered as columns of U.

Another way of stating the spectral theorem is to say that normal matrices are precisely those matrices that can be represented by a diagonal matrix with respect to a properly chosen orthonormal basis of Cn. Phrased differently: a matrix is normal if and only if its eigenspaces span Cn and are pairwise orthogonal with respect to the standard inner product of Cn.

The spectral theorem for normal matrices can be seen as a special case of the more general result which holds for all square matrices: Schur decomposition. In fact, let A be a square matrix. Then by Schur decomposition it is unitary similar to an upper-triangular matrix, say, B. If A is normal, so is B. But then B must be diagonal, for, as noted above, a normal upper-triangular matrix is diagonal.

The spectral theorem permits the classification of normal matrices in terms of their spectra. For example, a normal matrix is unitary if and only if its spectrum is contained in the unit circle of the complex plane. Also, a normal matrix is self-adjoint if and only if its spectrum consists of reals.

In general, the sum or product of two normal matrices need not be normal. However, there is a special case: if A and B are normal with AB = BA, then both AB and A + B are also normal. Furthermore the two are simultaneously diagonalizable, that is: both A and B are made diagonal by the same unitary matrix U. Both UAU* and UBU* are diagonal matrices. In this special case, the columns of U* are eigenvectors of both A and B and form an orthonormal basis in Cn. This follows by combining the theorems that, over an algebraically closed field, commuting matrices are simultaneously triangularizable and a normal matrix is diagonalizable – the added result is that these can both be done simultaneously.

Read more about this topic:  Normal Matrix

Famous quotes containing the word consequences:

    The middle years are ones in which children increasingly face conflicts on their own,... One of the truths to be faced by parents during this period is that they cannot do the work of living and relating for their children. They can be sounding boards and they can probe with the children the consequences of alternative actions.
    Dorothy H. Cohen (20th century)

    If you are prepared to accept the consequences of your dreams ... then you must still regard America today with the same naive enthusiasm as the generations that discovered the New World.
    Jean Baudrillard (b. 1929)

    War is thus divine in itself, since it is a law of the world. War is divine through its consequences of a supernatural nature which are as much general as particular.... War is divine in the mysterious glory that surrounds it and in the no less inexplicable attraction that draws us to it.... War is divine by the manner in which it breaks out.
    Joseph De Maistre (1753–1821)