Normal Matrix - Special Cases

Special Cases

Among complex matrices, all unitary, Hermitian, and skew-Hermitian matrices are normal. Likewise, among real matrices, all orthogonal, symmetric, and skew-symmetric matrices are normal.

However, it is not the case that all normal matrices are either unitary or (skew-)Hermitian. As an example, the matrix

is normal because

The matrix A is neither unitary, Hermitian, nor skew-Hermitian.

The sum or product of two normal matrices is not necessarily normal. If they commute, however, then this is true.

If A is both a triangular matrix and a normal matrix, then A is diagonal. This can be seen by looking at the diagonal entries of A*A and AA*, where A is a normal, triangular matrix.

Read more about this topic:  Normal Matrix

Famous quotes containing the words special and/or cases:

    I have the handicap of being born with a special language to which I alone have the key.
    Gustave Flaubert (1821–1880)

    There are some cases ... in which the sense of injury breeds—not the will to inflict injuries and climb over them as a ladder, but—a hatred of all injury.
    George Eliot [Mary Ann (or Marian)