Normal Matrix - Special Cases

Special Cases

Among complex matrices, all unitary, Hermitian, and skew-Hermitian matrices are normal. Likewise, among real matrices, all orthogonal, symmetric, and skew-symmetric matrices are normal.

However, it is not the case that all normal matrices are either unitary or (skew-)Hermitian. As an example, the matrix

is normal because

The matrix A is neither unitary, Hermitian, nor skew-Hermitian.

The sum or product of two normal matrices is not necessarily normal. If they commute, however, then this is true.

If A is both a triangular matrix and a normal matrix, then A is diagonal. This can be seen by looking at the diagonal entries of A*A and AA*, where A is a normal, triangular matrix.

Read more about this topic:  Normal Matrix

Famous quotes containing the words special and/or cases:

    The treatment of the incident of the assault upon the sailors of the Baltimore is so conciliatory and friendly that I am of the opinion that there is a good prospect that the differences growing out of that serious affair can now be adjusted upon terms satisfactory to this Government by the usual methods and without special powers from Congress.
    Benjamin Harrison (1833–1901)

    Lovers’ quarrels are not generally about money. Divorce cases generally are.
    Mason Cooley (b. 1927)