Jacobi Elliptic Functions

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta functions, that are of historical importance. Many of their features show up in important structures and have direct relevance to some applications (e.g. the equation of a pendulum—also see pendulum (mathematics)). They also have useful analogies to the functions of trigonometry, as indicated by the matching notation sn for sin. The Jacobi elliptic functions occur more often in practical problems than the Weierstrass elliptic functions. They were introduced by Carl Gustav Jakob Jacobi (1829).

Read more about Jacobi Elliptic Functions:  Introduction, Notation, Definition As Inverses of Elliptic Integrals, Definition in Terms of Theta Functions, Minor Functions, Addition Theorems, Relations Between Squares of The Functions, Expansion in Terms of The Nome, Jacobi Elliptic Functions As Solutions of Nonlinear Ordinary Differential Equations, Map Projection

Famous quotes containing the words jacobi and/or functions:

    ... spinsterhood [is considered to be] an abnormality of small proportions and small consequence, something like an extra finger or two on the body, presumably of temporary duration, and never of any social significance.
    —Mary Putnam Jacobi (1842–1906)

    One of the most highly valued functions of used parents these days is to be the villains of their children’s lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents’ failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.
    Frank Pittman (20th century)