Definition in Terms of Theta Functions
Equivalently, Jacobi elliptic functions can be defined in terms of his theta functions. If we abbreviate as, and respectively as (the theta constants) then the elliptic modulus k is . If we set, we have
Since the Jacobi functions are defined in terms of the elliptic modulus k(τ), we need to invert this and find τ in terms of k. We start from, the complementary modulus. As a function of τ it is
Let us first define
Then define the nome q as and expand as a power series in the nome q, we obtain
Reversion of series now gives
Since we may reduce to the case where the imaginary part of τ is greater than or equal to 1/2 sqrt(3), we can assume the absolute value of q is less than or equal to exp(-1/2 sqrt(3) π) ~ 0.0658; for values this small the above series converges very rapidly and easily allows us to find the appropriate value for q.
Read more about this topic: Jacobi Elliptic Functions
Famous quotes containing the words definition, terms and/or functions:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“The only freedom I care about is the freedom to do right; the freedom to do wrong I am ready to part with on the cheapest terms to anyone who will take it of me.”
—Thomas Henry Huxley (182595)
“Empirical science is apt to cloud the sight, and, by the very knowledge of functions and processes, to bereave the student of the manly contemplation of the whole.”
—Ralph Waldo Emerson (18031882)