Jacobi Elliptic Functions - Minor Functions

Minor Functions

Reversing the order of the two letters of the function name results in the reciprocals of the three functions above:


\begin{align}
\operatorname{ns}(u) & = \frac{1}{\operatorname{sn}(u)} \\
\operatorname{nc}(u) & = \frac{1}{\operatorname{cn}(u)} \\
\operatorname{nd}(u) & = \frac{1}{\operatorname{dn}(u)}
\end{align}

Similarly, the ratios of the three primary functions correspond to the first letter of the numerator followed by the first letter of the denominator:


\begin{align}
\operatorname{sc}(u) & = \frac{\operatorname{sn}(u)}{\operatorname{cn}(u)} \\
\operatorname{sd}(u) & = \frac{\operatorname{sn}(u)}{\operatorname{dn}(u)} \\
\operatorname{dc}(u) & = \frac{\operatorname{dn}(u)}{\operatorname{cn}(u)} \\
\operatorname{ds}(u) & = \frac{\operatorname{dn}(u)}{\operatorname{sn}(u)} \\
\operatorname{cs}(u) & = \frac{\operatorname{cn}(u)}{\operatorname{sn}(u)} \\
\operatorname{cd}(u) & = \frac{\operatorname{cn}(u)}{\operatorname{dn}(u)}
\end{align}

More compactly, we have

where each of p, q, and r is any of the letters s, c, d, n, with the understanding that ss = cc = dd = nn = 1.

(This notation is due to Gudermann and Glaisher and is not Jacobi's original notation.)

Read more about this topic:  Jacobi Elliptic Functions

Famous quotes containing the words minor and/or functions:

    Chopin—Two embalmers at work upon a minor poet ... the scent of tuberoses ... Autumn rain.
    —H.L. (Henry Lewis)

    Mark the babe
    Not long accustomed to this breathing world;
    One that hath barely learned to shape a smile,
    Though yet irrational of soul, to grasp
    With tiny finger—to let fall a tear;
    And, as the heavy cloud of sleep dissolves,
    To stretch his limbs, bemocking, as might seem,
    The outward functions of intelligent man.
    William Wordsworth (1770–1850)