Jacobi Elliptic Functions - Minor Functions

Minor Functions

Reversing the order of the two letters of the function name results in the reciprocals of the three functions above:


\begin{align}
\operatorname{ns}(u) & = \frac{1}{\operatorname{sn}(u)} \\
\operatorname{nc}(u) & = \frac{1}{\operatorname{cn}(u)} \\
\operatorname{nd}(u) & = \frac{1}{\operatorname{dn}(u)}
\end{align}

Similarly, the ratios of the three primary functions correspond to the first letter of the numerator followed by the first letter of the denominator:


\begin{align}
\operatorname{sc}(u) & = \frac{\operatorname{sn}(u)}{\operatorname{cn}(u)} \\
\operatorname{sd}(u) & = \frac{\operatorname{sn}(u)}{\operatorname{dn}(u)} \\
\operatorname{dc}(u) & = \frac{\operatorname{dn}(u)}{\operatorname{cn}(u)} \\
\operatorname{ds}(u) & = \frac{\operatorname{dn}(u)}{\operatorname{sn}(u)} \\
\operatorname{cs}(u) & = \frac{\operatorname{cn}(u)}{\operatorname{sn}(u)} \\
\operatorname{cd}(u) & = \frac{\operatorname{cn}(u)}{\operatorname{dn}(u)}
\end{align}

More compactly, we have

where each of p, q, and r is any of the letters s, c, d, n, with the understanding that ss = cc = dd = nn = 1.

(This notation is due to Gudermann and Glaisher and is not Jacobi's original notation.)

Read more about this topic:  Jacobi Elliptic Functions

Famous quotes containing the words minor and/or functions:

    To minor authors is left the ornamentation of the commonplace: these do not bother about any reinventing of the world; they merely try to squeeze the best they can out of a given order of things, out of traditional patterns of fiction.
    Vladimir Nabokov (1899–1977)

    In today’s world parents find themselves at the mercy of a society which imposes pressures and priorities that allow neither time nor place for meaningful activities and relations between children and adults, which downgrade the role of parents and the functions of parenthood, and which prevent the parent from doing things he wants to do as a guide, friend, and companion to his children.
    Urie Bronfenbrenner (b. 1917)