Group Representation

Group Representation

In the mathematical field of representation theory, group representations describe abstract groups in terms of linear transformations of vector spaces; in particular, they can be used to represent group elements as matrices so that the group operation can be represented by matrix multiplication. Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well-understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system.

The term representation of a group is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical object. More formally, a "representation" means a homomorphism from the group to the automorphism group of an object. If the object is a vector space we have a linear representation. Some people use realization for the general notion and reserve the term representation for the special case of linear representations. The bulk of this article describes linear representation theory; see the last section for generalizations.

Read more about Group Representation:  Branches of Group Representation Theory, Definitions, Examples, Reducibility

Famous quotes containing the word group:

    We begin with friendships, and all our youth is a reconnoitering and recruiting of the holy fraternity they shall combine for the salvation of men. But so the remoter stars seem a nebula of united light, yet there is no group which a telescope will not resolve; and the dearest friends are separated by impassable gulfs.
    Ralph Waldo Emerson (1803–1882)