Group Representation - Examples

Examples

Consider the complex number u = e2πi / 3 which has the property u3 = 1. The cyclic group C3 = {1, u, u2} has a representation ρ on C2 given by:


\rho \left( 1 \right) =
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\qquad
\rho \left( u \right) =
\begin{bmatrix}
1 & 0 \\
0 & u \\
\end{bmatrix}
\qquad
\rho \left( u^2 \right) =
\begin{bmatrix}
1 & 0 \\
0 & u^2 \\
\end{bmatrix}.

This representation is faithful because ρ is a one-to-one map.

An isomorphic representation for C3 is


\rho \left( 1 \right) =
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\qquad
\rho \left( u \right) =
\begin{bmatrix}
u & 0 \\
0 & 1 \\
\end{bmatrix}
\qquad
\rho \left( u^2 \right) =
\begin{bmatrix}
u^2 & 0 \\
0 & 1 \\
\end{bmatrix}.

The group C3 may also be faithfully represented on R2 by


\rho \left( 1 \right) =
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\qquad
\rho \left( u \right) =
\begin{bmatrix}
a & -b \\
b & a \\
\end{bmatrix}
\qquad
\rho \left( u^2 \right) =
\begin{bmatrix}
a & b \\
-b & a \\
\end{bmatrix}

where and .

Read more about this topic:  Group Representation

Famous quotes containing the word examples:

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)