Group Representation - Branches of Group Representation Theory

Branches of Group Representation Theory

The representation theory of groups divides into subtheories depending on the kind of group being represented. The various theories are quite different in detail, though some basic definitions and concepts are similar. The most important divisions are:

  • Finite groups — Group representations are a very important tool in the study of finite groups. They also arise in the applications of finite group theory to crystallography and to geometry. If the field of scalars of the vector space has characteristic p, and if p divides the order of the group, then this is called modular representation theory; this special case has very different properties. See Representation theory of finite groups.
  • Compact groups or locally compact groups — Many of the results of finite group representation theory are proved by averaging over the group. These proofs can be carried over to infinite groups by replacement of the average with an integral, provided that an acceptable notion of integral can be defined. This can be done for locally compact groups, using Haar measure. The resulting theory is a central part of harmonic analysis. The Pontryagin duality describes the theory for commutative groups, as a generalised Fourier transform. See also: Peter–Weyl theorem.
  • Lie groups — Many important Lie groups are compact, so the results of compact representation theory apply to them. Other techniques specific to Lie groups are used as well. Most of the groups important in physics and chemistry are Lie groups, and their representation theory is crucial to the application of group theory in those fields. See Representations of Lie groups and Representations of Lie algebras.
  • Linear algebraic groups (or more generally affine group schemes) — These are the analogues of Lie groups, but over more general fields than just R or C. Although linear algebraic groups have a classification that is very similar to that of Lie groups, and give rise to the same families of Lie algebras, their representations are rather different (and much less well understood). The analytic techniques used for studying Lie groups must be replaced by techniques from algebraic geometry, where the relatively weak Zariski topology causes many technical complications.
  • Non-compact topological groups — The class of non-compact groups is too broad to construct any general representation theory, but specific special cases have been studied, sometimes using ad hoc techniques. The semisimple Lie groups have a deep theory, building on the compact case. The complementary solvable Lie groups cannot in the same way be classified. The general theory for Lie groups deals with semidirect products of the two types, by means of general results called Mackey theory, which is a generalization of Wigner's classification methods.

Representation theory also depends heavily on the type of vector space on which the group acts. One distinguishes between finite-dimensional representations and infinite-dimensional ones. In the infinite-dimensional case, additional structures are important (e.g. whether or not the space is a Hilbert space, Banach space, etc.).

One must also consider the type of field over which the vector space is defined. The most important case is the field of complex numbers. The other important cases are the field of real numbers, finite fields, and fields of p-adic numbers. In general, algebraically closed fields are easier to handle than non-algebraically closed ones. The characteristic of the field is also significant; many theorems for finite groups depend on the characteristic of the field not dividing the order of the group.

Read more about this topic:  Group Representation

Famous quotes containing the words branches of, branches, group and/or theory:

    In the woods in a winter afternoon one will see as readily the origin of the stained glass window, with which Gothic cathedrals are adorned, in the colors of the western sky seen through the bare and crossing branches of the forest.
    Ralph Waldo Emerson (1803–1882)

    Go to the adolescent who are smothered in family—
    Oh how hideous it is
    To see three generations of one house gathered together!
    It is like an old tree with shoots,
    And with some branches rotted and falling.
    Ezra Pound (1885–1972)

    Laughing at someone else is an excellent way of learning how to laugh at oneself; and questioning what seem to be the absurd beliefs of another group is a good way of recognizing the potential absurdity of many of one’s own cherished beliefs.
    Gore Vidal (b. 1925)

    There could be no fairer destiny for any physical theory than that it should point the way to a more comprehensive theory in which it lives on as a limiting case.
    Albert Einstein (1879–1955)